A simple method for calibrating force plates and force treadmills using an instrumented pole.

نویسندگان

  • Steven H Collins
  • Peter G Adamczyk
  • Daniel P Ferris
  • Arthur D Kuo
چکیده

We propose a new method for calibrating force plates to reduce errors in center of pressure locations, forces, and moments. These errors may be caused by imperfect mounting of force plates to the ground or by installation of a treadmill atop a force plate, which may introduce distorting loads. The method, termed the Post-Installation Least-Squares (PILS) calibration, combines features of several previous methods into a simple procedure. It requires a motion capture system and an instrumented pole for applying reference loads. Reference loads may be manually applied to the force plate in arbitrary locations and directions. The instrumented pole measures applied load magnitudes through a single-axis load cell, and load directions through motion capture markers. Reference data and imperfect force plate signals are then combined to form a linear calibration matrix that simultaneously minimizes mean square errors in all forces and moments. We applied the procedure to standard laboratory force plates, as well as a custom-built, split-belt force treadmill. We also collected an independent set of verification data for testing. The proposed calibration procedure was found to reduce force errors by over 20%, and moment errors by over 60%. Center of pressure errors were also reduced by 63% for standard force plates and 91% for the force treadmill. The instrumented pole is advantageous because it allows for fast and arbitrary load application without needing a precise fixture for aligning loads. The linear calibration matrix is simpler than nonlinear correction equations and more compatible with standard data acquisition software, yet it yields error reductions comparable to more complex methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comprehensive protocol to test instrumented treadmills.

Instrumented treadmills are becoming more common in gait analysis. Due to their large and compliant structure, errors in force measurements are expected to be higher compared with conventional force plates. There is, however, no consistency in the literature on testing the performance of these treadmills. Therefore, we propose a standard protocol to assess and report error sources in instrument...

متن کامل

Developing a Low-Cost Force Treadmill via Dynamic Modeling

By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a stan...

متن کامل

Investigation of unbalanced magnetic force in permanent magnet brushless dc machines with diametrically asymmetric winding

The purpose of this paper is the calculation of Unbalanced Magnetic Force (UMF) in permanent magnet brushless DC (PMBLDC) machines with diametrically asymmetric winding and investigation of UMF variations in the presence of phase advance angle. This paper presents an analytical model of UMF in surface mounted PMBLDC machines that have a fractional ratio of slot number to pole number. This model...

متن کامل

Instrumented treadmills: establishing measurement properties is necessary for evaluating clinical interventions

Background Instrumented treadmills that provide basic gait parameters in near real–time are emerging as valuable outcome tools in both clinical and research settings. Significant changes in step length and peak vertical force in the order of 2cm and 20-70N have been reported with footwear interventions and neurological disorders using these systems. However, published data about the systems’ me...

متن کامل

Thrust Ripple Reduction of Permanent Magnet Linear Synchronous Motor Based on Improved Pole Shape for Electromagnetic Launcher System

In this paper, a new design of permanent magnet linear synchronous motor (PMLSM) for electromagnetic launcher system (EMLs) has been investigated in terms of the requisite amount of average launching thrust force and thrust force ripple minimization through finite element method. EMLs are a kind of technology used to develop thrust force and launch heavy loads with different applications includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Gait & posture

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2009